If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+1x=35
We move all terms to the left:
12x^2+1x-(35)=0
We add all the numbers together, and all the variables
12x^2+x-35=0
a = 12; b = 1; c = -35;
Δ = b2-4ac
Δ = 12-4·12·(-35)
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-41}{2*12}=\frac{-42}{24} =-1+3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+41}{2*12}=\frac{40}{24} =1+2/3 $
| 12x+1x=35 | | 8/16/5=20/2x | | xx9=126 | | x-39=80 | | 143+568=x | | c=0.8 | | 8x2=135 | | 4=5w-11 | | 5s+7=27 | | 4x-25-121=0 | | 7=13-2m | | 4q+15=47 | | 33=4a | | 1=10-f | | 20-4x=6- | | 6x^2+5x-2+3=0 | | x=4(x)=16 | | 3x+7,x=6 | | x^-2x+9=0 | | 12.55x=99.032 | | |11y|=0 | | 6p+2=-10 | | a+(a-4)=(a+5)-(a+ | | g^2-4g=7 | | y=500(1,05) | | +7x-6x=0+12+20 | | 9x=1077 | | -2+c+C2=0 | | a^2+2a+20=180 | | 6(2n+5)=6 | | 4x+7x-2x-5=22 | | 10/(2x-3)=2 |